search
The following results are related to Neuroinformatics. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Neuroinformatics
  • Embargo
  • Cerebral Cortex

Relevance
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ludovica Mana; Manel Vila-Vidal; Charlotte Köckeritz; Kevin Aquino; +3 Authors

    Schizophrenia is a debilitating neuropsychiatric disorder whose underlying correlates remain unclear despite decades of neuroimaging investigation. One contentious topic concerns the role of global signal (GS) fluctuations and how they affect more focal functional changes. Moreover, it has been difficult to pinpoint causal mechanisms of circuit disruption. Here, we analyzed resting-state fMRI data from 47 schizophrenia patients and 118 age-matched healthy controls and used dynamical analyses to investigate how global fluctuations and other functional metastable states are affected by this disorder. We found that brain dynamics in the schizophrenia group were characterized by an increased probability of globally coherent states and reduced recurrence of a substate dominated by coupled activity in the default mode and limbic networks. We then used the in silico perturbation of a whole-brain model to identify critical areas involved in the disease. Perturbing a set of temporo-parietal sensory and associative areas in a model of the healthy brain reproduced global pathological dynamics. Healthy brain dynamics were instead restored by perturbing a set of medial fronto-temporal and cingulate regions in the model of pathology. These results highlight the relevance of GS alterations in schizophrenia and identify a set of vulnerable areas involved in determining a shift in brain state. The project that gave rise to these results received the support of a fellowship from “la Caixa” foundation “(ID 100010434)”. The fellowship code is: “(LCF/BQ/DI19/11730048)”, and financed L.M work. In addition, G.D., M.V and L.M. were supported by the Human Brain Project Specific Grant Agreement 3 Grant agreement no. “(945539)” and by the Spanish Research Project AWAKENING: using whole-brain models perturbational approaches for predicting external stimulation to force transitions between different brain states, ref. “(PID2019-105772GBI00/AEI/10.13039/501100011033)”, financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). G.D. and M.V. were also supported by the project “Clúster Emergent del Cervell Humà” “(CECH, ref. 001-P-001682)”, within the framework of the European Research Development Fund Operational Program of Catalonia 2014–2020. M.L.K. is supported by the Center for Music in the Brain, funded by the Danish National Research Foundation “(DNRF117)”, and Centre for Eudaimonia and Human Flourishing at Linacre College funded by the Pettit and Carlsberg Foundations. This is a pre-copyedited, author-produced version of an article accepted for publication in Cerebral cortex following peer review. The version of record Mana, L. et al. Using in silico perturbational approach to identify critical areas in schizophrenia. "Cerebral cortex", 15 Juny 2023, vol. 33, núm. 12, p. 7642-7658 is available online at: https://doi.org/10.1093/cercor/bhad067. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility24
    visibilityviews24
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qing, Li; Shouhang, Yin; Jing, Wang; Mengke, Zhang; +3 Authors

    Abstract Empirical evidence on error processing comes from the comparison between errors and correct responses in general, but essential differences may exist between different error types. Typically, cognitive control tasks elicit errors without conflicts (congruent errors) and with conflicts (incongruent errors), which may employ different monitoring and adjustment mechanisms. However, the neural indicators that distinguish between both error types remain unclear. To solve this issue, behavioral and electrophysiological data were measured while subjects performed the flanker task. Results showed that a significant post-error improvement in accuracy on incongruent errors, but not on congruent errors. Theta and beta power were comparable between both error types. Importantly, the basic error-related alpha suppression (ERAS) effect was observed on both errors, whereas ERAS evoked by incongruent errors was greater than congruent errors, indicating that post-error attentional adjustments are both source-general and source-specific. And the brain activity in alpha band, but not theta or beta band, successfully decoded congruent and incongruent errors. Furthermore, improved post-incongruent error accuracy was predicted by a measure of post-error attentional adjustments, the alpha power. Together, these findings demonstrate that ERAS is a reliable neural indicator for identifying error types, and directly conduces to the improvement of post-error behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Eva Breitinger; Neil M Dundon; Lena Pokorny; Heidrun L Wunram; +2 Authors

    Abstract People who are blind demonstrate remarkable abilities within the spared senses and compensatory enhancement of cognitive skills, underscored by substantial plastic reorganization in relevant neural areas. However, little is known about whether people with blindness form top-down models of the world on short timescales more efficiently to guide goal-oriented behavior. This electroencephalography study investigates this hypothesis at the neurophysiological level, focusing on contingent negative variation (CNV) as a marker of anticipatory and preparatory processes prior to expected events. In sum, 20 participants with blindness and 27 sighted participants completed a classic CNV task and a memory CNV task, both containing tactile stimuli to exploit the expertise of the former group. Although the reaction times in the classic CNV task did not differ between groups, participants who are blind reached higher performance rates in the memory task. This superior performance co-occurred with a distinct neurophysiological profile, relative to controls: greater late CNV amplitudes over central areas, suggesting enhanced stimulus expectancy and motor preparation prior to key events. Controls, in contrast, recruited more frontal sites, consistent with inefficient sensory-aligned control. We conclude that in more demanding cognitive contexts exploiting the spared senses, people with blindness efficiently generate task-relevant internal models to facilitate behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nobuya Abe; Kodai Sakiyama; Yuichiro Fujieda; Khin K. Tha; +6 Authors

    ABSTRACTAberrant resting-state static functional connectivity of the brain regions, which could be evaluated by functional magnetic resonance imaging (fMRI), affects clinical courses in inflammatory arthritis (IA) including rheumatoid arthritis and spondyloarthritis. This static methods for assessing brain functional connections would be too simple to estimate the whole picture of resting-state brain function because it fluctuates over time. The effects of resting-state brain connectivity dynamics for clinical course are unknown in patients with IA. Therefore, we aimed to evaluate dynamic functional connectivity for clinical courses of IA in the context of therapeutic responsiveness to biologics using resting-state fMRI data of 64 patients with IA consisting of two cohorts. We determined representative whole-brain dynamic functional connectivity patterns by k-means++ cluster analysis, and evaluated the association of their occurrence probability and therapeutic outcomes with biologics. We determined four distinct clusters of dynamic functional connectivity in IA patients. In the first cohort, occurrence probability of the distinct cluster was associated with favorable therapeutic response in disease activity and patients’ global assessment. This finding was validated by the second cohort. The whole-brain functional coordination of the cluster indicated significantly increased corticocortical connectivity, and probabilistically decreased after therapy in treatment-effective patients compared to -ineffective patients. In conclusion, dynamic functional connectivity, in particular, frequent emergence of corticocortical connections was associated with clinical outcomes in patients with IA. The coherence of corticocortical interactions might affect modulation of pain, which would be relevant to therapeutic satisfaction.SUMMARYEffects of resting-state dynamic connectivity on clinical course of inflammatory arthritis regarding therapeutic responsiveness to biologics were assessed by functional magnetic resonance.Occurrence probability of corticocortical functional connectivity pattern was associated with favorable therapeutic response in disease activity and patients’ global assessment in inflammatory arthritis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David D, Coggan; Frank, Tong;

    Abstract Considerable research has been devoted to understanding the fundamental organizing principles of the ventral visual pathway. A recent study revealed a series of 3–4 topographical maps arranged along the macaque inferotemporal (IT) cortex. The maps articulated a two-dimensional space based on the spikiness and animacy of visual objects, with “inanimate-spiky” and “inanimate-stubby” regions of the maps constituting two previously unidentified cortical networks. The goal of our study was to determine whether a similar functional organization might exist in human IT. To address this question, we presented the same object stimuli and images from “classic” object categories (bodies, faces, houses) to humans while recording fMRI activity at 7 Tesla. Contrasts designed to reveal the spikiness-animacy object space evoked extensive significant activation across human IT. However, unlike the macaque, we did not observe a clear sequence of complete maps, and selectivity for the spikiness-animacy space was deeply and mutually entangled with category-selectivity. Instead, we observed multiple new stimulus preferences in category-selective regions, including functional sub-structure related to object spikiness in scene-selective cortex. Taken together, these findings highlight spikiness as a promising organizing principle of human IT and provide new insights into the role of category-selective regions in visual object processing.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Songlin, Xiao; Bin, Shen; Chuyi, Zhang; Xini, Zhang; +3 Authors

    Abstract This study aimed to investigate the cortical responses to the ankle force control and the mechanism underlying changes in ankle force control task induced by transcranial direct current stimulation (tDCS). Sixteen young adults were recruited, and they completed the electroencephalogram (EEG) assessment and high-definition tDCS (HD-tDCS) sessions. Root mean square (RMS) error was used to evaluate ankle force control task performance. Spectral power analysis was conducted to extract the average power spectral density (PSD) in the alpha (8–13 Hz) and beta (13–30 Hz) bands for resting state and tasking (i.e. task-PSD). The ankle force control task induced significant decreases in alpha and beta PSDs in the central, left, and right primary sensorimotor cortex (SM1) and beta PSD in the central frontal as compared with the resting state. HD-tDCS significantly decreased the RMS and beta task-PSD in the central frontal and SM1. A significant association between the percent change of RMS and the percent change of beta task-PSD in the central SM1 after HD-tDCS was observed. In conclusion, ankle force control task activated a distributed cortical network mainly including the SM1. HD-tDCS applied over SM1 could enhance ankle force control and modulate the beta-band activity of the sensorimotor cortex.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ang, Sun; Jiaojian, Wang; Junran, Zhang;

    Abstract Brain network analysis is an effective method to seek abnormalities in functional interactions for brain disorders such as autism spectrum disorder (ASD). Traditional studies of brain networks focus on the node-centric functional connectivity (nFC), ignoring interactions of edges to miss much information that facilitates diagnostic decisions. In this study, we present a protocol based on an edge-centric functional connectivity (eFC) approach, which significantly improves classification performance by utilizing the co-fluctuations information between the edges of brain regions compared with nFC to build the classification mode for ASD using the multi-site dataset Autism Brain Imaging Data Exchange I (ABIDE I). Our model results show that even using the traditional machine-learning classifier support vector machine (SVM) on the challenging ABIDE I dataset, relatively high performance is achieved: 96.41% of accuracy, 98.30% of sensitivity, and 94.25% of specificity. These promising results suggest that the eFC can be used to build a reliable machine-learning framework to diagnose mental disorders such as ASD and promote identifications of stable and effective biomarkers. This study provides an essential complementary perspective for understanding the neural mechanisms of ASD and may facilitate future investigations on early diagnosis of neuropsychiatric disorders.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Song, Li; Wang, Pengfei; Li, Hui; Weiss-Blankenhorn, Peter; +3 Authors

    AbstractEarly auditory deprivation leads to a reorganization of large-scale brain networks involving and extending beyond the auditory system. It has been documented that visuomotor transformation is impaired after early deafness, associated with a hyper-crosstalk between the task-critical frontoparietal network and the default-mode network. However, it remains unknown whether and how the reorganized large-scale brain networks involving the auditory cortex contribute to impaired visuomotor transformation after early deafness. Here, we asked deaf and early hard of hearing participants and normal hearing controls to judge the spatial location of a visual target. Compared with normal hearing controls, the superior temporal gyrus showed significantly increased functional connectivity with the frontoparietal network and the default-mode network in deaf and early hard of hearing participants, specifically during egocentric judgments. However, increased superior temporal gyrus-frontoparietal network and superior temporal gyrus-default-mode network coupling showed antagonistic effects on egocentric judgments. In deaf and early hard of hearing participants, increased superior temporal gyrus-frontoparietal network connectivity was associated with improved egocentric judgments, whereas increased superior temporal gyrus-default-mode network connectivity was associated with deteriorated performance in the egocentric task. Therefore, the data suggest that the auditory cortex exhibits compensatory neuroplasticity (i.e. increased functional connectivity with the task-critical frontoparietal network) to mitigate impaired visuomotor transformation after early auditory deprivation.Keywords: connectomics; deaf and early hard of hearing; modularity; neural plasticity; superior temporal gyrus. Cerebral cortex 33(22), 11126 - 11145 (2023). doi:10.1093/cercor/bhad351 Published by Oxford Univ. Press, Oxford

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaoluan Xia; Xinglin Zeng; Fei Gao; Zhen Yuan;

    Abstract Cross-species connectome atlas (CCA) that can provide connectionally homogeneous and homologous brain nodes is essential and customized for cross-species neuroscience. However, existing CCAs were flawed in design and coarse-grained in results. In this study, a normative mapping framework of CCA was proposed and applied on human and macaque striatum. Specifically, all striatal voxels in the 2 species were mixed together and classified based on their represented and characterized feature of within-striatum resting-state functional connectivity, which was shared between the species. Six pairs of striatal parcels in these species were delineated in both hemispheres. Furthermore, this striatal parcellation was demonstrated by the best-matched whole-brain functional and structural connectivity between interspecies corresponding subregions. Besides, detailed interspecies differences in whole-brain multimodal connectivities and involved brain functions of these subregions were described to flesh out this CCA of striatum. In particular, this flexible and scalable mapping framework enables reliable construction of CCA of the whole brain, which would enable reliable findings in future cross-species research and advance our understandings into how the human brain works.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dashiell D, Sacks; Paul E, Schwenn; Amanda, Boyes; Lia, Mills; +4 Authors

    Abstract Cross-frequency coupling between the phase of slower oscillatory activity and the amplitude of faster oscillatory activity in the brain (phase-amplitude coupling; PAC), is a promising new biological marker for mental health. Prior research has demonstrated that PAC is associated with mental health. However, most research has focused on within-region theta-gamma PAC in adults. Our recent preliminary study found increased theta-beta PAC was associated with increased psychological distress in 12 year olds. It is important to investigate how PAC biomarkers relate to mental health and wellbeing in youth. Thus, in this study, we investigated longitudinal associations between interregional (posterior–anterior cortex) resting-state theta-beta PAC (Modulation Index [MI]), psychological distress and wellbeing in N = 99 adolescents (aged 12–15 years). In the right hemisphere, there was a significant relationship, whereby increased psychological distress was associated with decreased theta-beta PAC and psychological distress increased with increased age. In the left hemisphere, there was a significant relationship, whereby decreased wellbeing was associated with decreased theta-beta PAC and wellbeing scores decreased with increased age. This study presents novel findings demonstrating longitudinal relationships between interregional, resting-state theta-beta PAC and mental health and wellbeing in early adolescents. This EEG marker may facilitate improved early identification of emerging psychopathology.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Neuroinformatics. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ludovica Mana; Manel Vila-Vidal; Charlotte Köckeritz; Kevin Aquino; +3 Authors

    Schizophrenia is a debilitating neuropsychiatric disorder whose underlying correlates remain unclear despite decades of neuroimaging investigation. One contentious topic concerns the role of global signal (GS) fluctuations and how they affect more focal functional changes. Moreover, it has been difficult to pinpoint causal mechanisms of circuit disruption. Here, we analyzed resting-state fMRI data from 47 schizophrenia patients and 118 age-matched healthy controls and used dynamical analyses to investigate how global fluctuations and other functional metastable states are affected by this disorder. We found that brain dynamics in the schizophrenia group were characterized by an increased probability of globally coherent states and reduced recurrence of a substate dominated by coupled activity in the default mode and limbic networks. We then used the in silico perturbation of a whole-brain model to identify critical areas involved in the disease. Perturbing a set of temporo-parietal sensory and associative areas in a model of the healthy brain reproduced global pathological dynamics. Healthy brain dynamics were instead restored by perturbing a set of medial fronto-temporal and cingulate regions in the model of pathology. These results highlight the relevance of GS alterations in schizophrenia and identify a set of vulnerable areas involved in determining a shift in brain state. The project that gave rise to these results received the support of a fellowship from “la Caixa” foundation “(ID 100010434)”. The fellowship code is: “(LCF/BQ/DI19/11730048)”, and financed L.M work. In addition, G.D., M.V and L.M. were supported by the Human Brain Project Specific Grant Agreement 3 Grant agreement no. “(945539)” and by the Spanish Research Project AWAKENING: using whole-brain models perturbational approaches for predicting external stimulation to force transitions between different brain states, ref. “(PID2019-105772GBI00/AEI/10.13039/501100011033)”, financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). G.D. and M.V. were also supported by the project “Clúster Emergent del Cervell Humà” “(CECH, ref. 001-P-001682)”, within the framework of the European Research Development Fund Operational Program of Catalonia 2014–2020. M.L.K. is supported by the Center for Music in the Brain, funded by the Danish National Research Foundation “(DNRF117)”, and Centre for Eudaimonia and Human Flourishing at Linacre College funded by the Pettit and Carlsberg Foundations. This is a pre-copyedited, author-produced version of an article accepted for publication in Cerebral cortex following peer review. The version of record Mana, L. et al. Using in silico perturbational approach to identify critical areas in schizophrenia. "Cerebral cortex", 15 Juny 2023, vol. 33, núm. 12, p. 7642-7658 is available online at: https://doi.org/10.1093/cercor/bhad067. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility24
    visibilityviews24
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qing, Li; Shouhang, Yin; Jing, Wang; Mengke, Zhang; +3 Authors

    Abstract Empirical evidence on error processing comes from the comparison between errors and correct responses in general, but essential differences may exist between different error types. Typically, cognitive control tasks elicit errors without conflicts (congruent errors) and with conflicts (incongruent errors), which may employ different monitoring and adjustment mechanisms. However, the neural indicators that distinguish between both error types remain unclear. To solve this issue, behavioral and electrophysiological data were measured while subjects performed the flanker task. Results showed that a significant post-error improvement in accuracy on incongruent errors, but not on congruent errors. Theta and beta power were comparable between both error types. Importantly, the basic error-related alpha suppression (ERAS) effect was observed on both errors, whereas ERAS evoked by incongruent errors was greater than congruent errors, indicating that post-error attentional adjustments are both source-general and source-specific. And the brain activity in alpha band, but not theta or beta band, successfully decoded congruent and incongruent errors. Furthermore, improved post-incongruent error accuracy was predicted by a measure of post-error attentional adjustments, the alpha power. Together, these findings demonstrate that ERAS is a reliable neural indicator for identifying error types, and directly conduces to the improvement of post-error behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Eva Breitinger; Neil M Dundon; Lena Pokorny; Heidrun L Wunram; +2 Authors

    Abstract People who are blind demonstrate remarkable abilities within the spared senses and compensatory enhancement of cognitive skills, underscored by substantial plastic reorganization in relevant neural areas. However, little is known about whether people with blindness form top-down models of the world on short timescales more efficiently to guide goal-oriented behavior. This electroencephalography study investigates this hypothesis at the neurophysiological level, focusing on contingent negative variation (CNV) as a marker of anticipatory and preparatory processes prior to expected events. In sum, 20 participants with blindness and 27 sighted participants completed a classic CNV task and a memory CNV task, both containing tactile stimuli to exploit the expertise of the former group. Although the reaction times in the classic CNV task did not differ between groups, participants who are blind reached higher performance rates in the memory task. This superior performance co-occurred with a distinct neurophysiological profile, relative to controls: greater late CNV amplitudes over central areas, suggesting enhanced stimulus expectancy and motor preparation prior to key events. Controls, in contrast, recruited more frontal sites, consistent with inefficient sensory-aligned control. We conclude that in more demanding cognitive contexts exploiting the spared senses, people with blindness efficiently generate task-relevant internal models to facilitate behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nobuya Abe; Kodai Sakiyama; Yuichiro Fujieda; Khin K. Tha; +6 Authors

    ABSTRACTAberrant resting-state static functional connectivity of the brain regions, which could be evaluated by functional magnetic resonance imaging (fMRI), affects clinical courses in inflammatory arthritis (IA) including rheumatoid arthritis and spondyloarthritis. This static methods for assessing brain functional connections would be too simple to estimate the whole picture of resting-state brain function because it fluctuates over time. The effects of resting-state brain connectivity dynamics for clinical course are unknown in patients with IA. Therefore, we aimed to evaluate dynamic functional connectivity for clinical courses of IA in the context of therapeutic responsiveness to biologics using resting-state fMRI data of 64 patients with IA consisting of two cohorts. We determined representative whole-brain dynamic functional connectivity patterns by k-means++ cluster analysis, and evaluated the association of their occurrence probability and therapeutic outcomes with biologics. We determined four distinct clusters of dynamic functional connectivity in IA patients. In the first cohort, occurrence probability of the distinct cluster was associated with favorable therapeutic response in disease activity and patients’ global assessment. This finding was validated by the second cohort. The whole-brain functional coordination of the cluster indicated significantly increased corticocortical connectivity, and probabilistically decreased after therapy in treatment-effective patients compared to -ineffective patients. In conclusion, dynamic functional connectivity, in particular, frequent emergence of corticocortical connections was associated with clinical outcomes in patients with IA. The coherence of corticocortical interactions might affect modulation of pain, which would be relevant to therapeutic satisfaction.SUMMARYEffects of resting-state dynamic connectivity on clinical course of inflammatory arthritis regarding therapeutic responsiveness to biologics were assessed by functional magnetic resonance.Occurrence probability of corticocortical functional connectivity pattern was associated with favorable therapeutic response in disease activity and patients’ global assessment in inflammatory arthritis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David D, Coggan; Frank, Tong;

    Abstract Considerable research has been devoted to understanding the fundamental organizing principles of the ventral visual pathway. A recent study revealed a series of 3–4 topographical maps arranged along the macaque inferotemporal (IT) cortex. The maps articulated a two-dimensional space based on the spikiness and animacy of visual objects, with “inanimate-spiky” and “inanimate-stubby” regions of the maps constituting two previously unidentified cortical networks. The goal of our study was to determine whether a similar functional organization might exist in human IT. To address this question, we presented the same object stimuli and images from “classic” object categories (bodies, faces, houses) to humans while recording fMRI activity at 7 Tesla. Contrasts designed to reveal the spikiness-animacy object space evoked extensive significant activation across human IT. However, unlike the macaque, we did not observe a clear sequence of complete maps, and selectivity for the spikiness-animacy space was deeply and mutually entangled with category-selectivity. Instead, we observed multiple new stimulus preferences in category-selective regions, including functional sub-structure related to object spikiness in scene-selective cortex. Taken together, these findings highlight spikiness as a promising organizing principle of human IT and provide new insights into the role of category-selective regions in visual object processing.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Songlin, Xiao; Bin, Shen; Chuyi, Zhang; Xini, Zhang; +3 Authors

    Abstract This study aimed to investigate the cortical responses to the ankle force control and the mechanism underlying changes in ankle force control task induced by transcranial direct current stimulation (tDCS). Sixteen young adults were recruited, and they completed the electroencephalogram (EEG) assessment and high-definition tDCS (HD-tDCS) sessions. Root mean square (RMS) error was used to evaluate ankle force control task performance. Spectral power analysis was conducted to extract the average power spectral density (PSD) in the alpha (8–13 Hz) and beta (13–30 Hz) bands for resting state and tasking (i.e. task-PSD). The ankle force control task induced significant decreases in alpha and beta PSDs in the central, left, and right primary sensorimotor cortex (SM1) and beta PSD in the central frontal as compared with the resting state. HD-tDCS significantly decreased the RMS and beta task-PSD in the central frontal and SM1. A significant association between the percent change of RMS and the percent change of beta task-PSD in the central SM1 after HD-tDCS was observed. In conclusion, ankle force control task activated a distributed cortical network mainly including the SM1. HD-tDCS applied over SM1 could enhance ankle force control and modulate the beta-band activity of the sensorimotor cortex.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ang, Sun; Jiaojian, Wang; Junran, Zhang;

    Abstract Brain network analysis is an effective method to seek abnormalities in functional interactions for brain disorders such as autism spectrum disorder (ASD). Traditional studies of brain networks focus on the node-centric functional connectivity (nFC), ignoring interactions of edges to miss much information that facilitates diagnostic decisions. In this study, we present a protocol based on an edge-centric functional connectivity (eFC) approach, which significantly improves classification performance by utilizing the co-fluctuations information between the edges of brain regions compared with nFC to build the classification mode for ASD using the multi-site dataset Autism Brain Imaging Data Exchange I (ABIDE I). Our model results show that even using the traditional machine-learning classifier support vector machine (SVM) on the challenging ABIDE I dataset, relatively high performance is achieved: 96.41% of accuracy, 98.30% of sensitivity, and 94.25% of specificity. These promising results suggest that the eFC can be used to build a reliable machine-learning framework to diagnose mental disorders such as ASD and promote identifications of stable and effective biomarkers. This study provides an essential complementary perspective for understanding the neural mechanisms of ASD and may facilitate future investigations on early diagnosis of neuropsychiatric disorders.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Song, Li; Wang, Pengfei; Li, Hui; Weiss-Blankenhorn, Peter; +3 Authors

    AbstractEarly auditory deprivation leads to a reorganization of large-scale brain networks involving and extending beyond the auditory system. It has been documented that visuomotor transformation is impaired after early deafness, associated with a hyper-crosstalk between the task-critical frontoparietal network and the default-mode network. However, it remains unknown whether and how the reorganized large-scale brain networks involving the auditory cortex contribute to impaired visuomotor transformation after early deafness. Here, we asked deaf and early hard of hearing participants and normal hearing controls to judge the spatial location of a visual target. Compared with normal hearing controls, the superior temporal gyrus showed significantly increased functional connectivity with the frontoparietal network and the default-mode network in deaf and early hard of hearing participants, specifically during egocentric judgments. However, increased superior temporal gyrus-frontoparietal network and superior temporal gyrus-default-mode network coupling showed antagonistic effects on egocentric judgments. In deaf and early hard of hearing participants, increased superior temporal gyrus-frontoparietal network connectivity was associated with improved egocentric judgments, whereas increased superior temporal gyrus-default-mode network connectivity was associated with deteriorated performance in the egocentric task. Therefore, the data suggest that the auditory cortex exhibits compensatory neuroplasticity (i.e. increased functional connectivity with the task-critical frontoparietal network) to mitigate impaired visuomotor transformation after early auditory deprivation.Keywords: connectomics; deaf and early hard of hearing; modularity; neural plasticity; superior temporal gyrus. Cerebral cortex 33(22), 11126 - 11145 (2023). doi:10.1093/cercor/bhad351 Published by Oxford Univ. Press, Oxford

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaoluan Xia; Xinglin Zeng; Fei Gao; Zhen Yuan;

    Abstract Cross-species connectome atlas (CCA) that can provide connectionally homogeneous and homologous brain nodes is essential and customized for cross-species neuroscience. However, existing CCAs were flawed in design and coarse-grained in results. In this study, a normative mapping framework of CCA was proposed and applied on human and macaque striatum. Specifically, all striatal voxels in the 2 species were mixed together and classified based on their represented and characterized feature of within-striatum resting-state functional connectivity, which was shared between the species. Six pairs of striatal parcels in these species were delineated in both hemispheres. Furthermore, this striatal parcellation was demonstrated by the best-matched whole-brain functional and structural connectivity between interspecies corresponding subregions. Besides, detailed interspecies differences in whole-brain multimodal connectivities and involved brain functions of these subregions were described to flesh out this CCA of striatum. In particular, this flexible and scalable mapping framework enables reliable construction of CCA of the whole brain, which would enable reliable findings in future cross-species research and advance our understandings into how the human brain works.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dashiell D, Sacks; Paul E, Schwenn; Amanda, Boyes; Lia, Mills; +4 Authors

    Abstract Cross-frequency coupling between the phase of slower oscillatory activity and the amplitude of faster oscillatory activity in the brain (phase-amplitude coupling; PAC), is a promising new biological marker for mental health. Prior research has demonstrated that PAC is associated with mental health. However, most research has focused on within-region theta-gamma PAC in adults. Our recent preliminary study found increased theta-beta PAC was associated with increased psychological distress in 12 year olds. It is important to investigate how PAC biomarkers relate to mental health and wellbeing in youth. Thus, in this study, we investigated longitudinal associations between interregional (posterior–anterior cortex) resting-state theta-beta PAC (Modulation Index [MI]), psychological distress and wellbeing in N = 99 adolescents (aged 12–15 years). In the right hemisphere, there was a significant relationship, whereby increased psychological distress was associated with decreased theta-beta PAC and psychological distress increased with increased age. In the left hemisphere, there was a significant relationship, whereby decreased wellbeing was associated with decreased theta-beta PAC and wellbeing scores decreased with increased age. This study presents novel findings demonstrating longitudinal relationships between interregional, resting-state theta-beta PAC and mental health and wellbeing in early adolescents. This EEG marker may facilitate improved early identification of emerging psychopathology.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Cerebral Cortex
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Cerebral Cortex
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cerebral Cortexarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Cerebral Cortex
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Cerebral Cortex
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.