- home
- Search
Loading
description Publicationkeyboard_double_arrow_right Article 2023 Netherlands, GermanyWiley Authors: Nikos Priovoulos; Icaro Agenor Ferreira de Oliveira; Benedikt A. Poser; David G. Norris; +1 AuthorsNikos Priovoulos; Icaro Agenor Ferreira de Oliveira; Benedikt A. Poser; David G. Norris; Wietske van der Zwaag;doi: 10.1002/hbm.26227
pmid: 36763562
AbstractBOLD fMRI is widely applied in human neuroscience but is limited in its spatial specificity due to a cortical‐depth‐dependent venous bias. This reduces its localization specificity with respect to neuronal responses, a disadvantage for neuroscientific research. Here, we modified a submillimeter BOLD protocol to selectively reduce venous and tissue signal and increase cerebral blood volume weighting through a pulsed saturation scheme (dubbed Arterial Blood Contrast) at 7 T. Adding Arterial Blood Contrast on top of the existing BOLD contrast modulated the intracortical contrast. Isolating the Arterial Blood Contrast showed a response free of pial‐surface bias. The results suggest that Arterial Blood Contrast can modulate the typical fMRI spatial specificity, with important applications in in‐vivo neuroscience.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hbm.26227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hbm.26227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 FinlandElsevier BV Karoliina Uusitalo; Leena Haataja; Virva Saunavaara; Annika Lind; Victor Vorobyev; Joni Tilli; Riitta Parkkola; Sirkku Setänen; Mikael Ekblad; Satu Ekblad; Eeva Ekholm; Linda Grönroos; Leena Haataja; Mira Huhtala; Jere Jaakkola; Eveliina Joensuu; Pentti Kero; Riikka Korja; Katri Lahti; Helena Lapinleimu; Liisa Lehtonen; Tuomo Lehtonen; Marika Leppänen; Annika Lind; Jaakko Matomäki; Jonna Maunu; Petriina Munck; Laura Määttänen; Pekka Niemi; Anna Nyman; Pertti Palo; Riitta Parkkola; Liisi Ripatti; Päivi Rautava; Katriina Saarinen; Tiina Saarinen; Virva Saunavaara; Sirkku Setänen; Matti Sillanpää; Suvi Stolt; Päivi Tuomikoski-Koiranen; Timo Tuovinen; Karoliina Uusitalo; Anniina Väliaho; Milla Ylijoki;pmid: 34339952
Abstract Background Fine motor and coordination problems are frequently reported among adolescents born preterm. We aimed to assess performance in hand coordination tasks and to compare concurrent brain activation between adolescents born very preterm and at term at 13 years. Methods A total of 34 right-handed adolescents born very preterm (gestational age less than 32 weeks/birth weight ≤1500 grams) and 37 controls born at term during 2003 to 2006 in Turku University Hospital, Finland, were recruited. At 13 years, finger opposition and diadochokinesis were assessed, and brain functional magnetic resonance imaging data were acquired while the adolescents performed unimanual hand coordination tasks in response to visual cue. Results Adolescents born very preterm performed similar to controls in hand coordination tasks. The very preterm group evoked greater brain activation than the controls in the right precentral gyrus and in the right postcentral gyrus during left-hand finger opposition and in the right postcentral gyrus during left-hand diadochokinesis. Within the very preterm group, lower gestational age was associated with reduced activation in the left superior parietal lobule during right-hand diadochokinesis. Regarding left-hand tasks, lower gestational age was associated with stronger activation in the right cerebellar lobule V and left cerebellar lobule VI during finger opposition and stronger activation in the right superior parietal lobule during diadochokinesis. Conclusions Very preterm birth affected hand coordination-related brain activation. Most of the effects were found for nondominant hand. Clinical performance during the hand coordination tasks was similar in adolescents born very preterm and controls.
Pediatric Neurology arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pediatrneurol.2021.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Pediatric Neurology arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pediatrneurol.2021.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021MDPI AG Authors: Kaoru Kinugawa; Tomoo Mano; Kazuma Sugie;Kaoru Kinugawa; Tomoo Mano; Kazuma Sugie;Pain is an important non-motor symptom of Parkinson’s disease (PD). It negatively impacts the quality of life. However, the pathophysiological mechanisms underlying pain in PD remain to be elucidated. This study sought to use electroencephalographic (EEG) coherence analysis to compare neuronal synchronization in neuronal networks between patients with PD, with and without pain. Twenty-four patients with sporadic PD were evaluated for the presence of pain. Time-frequency and coherence analyses were performed on their EEG data. Whole-brain and regional coherence were calculated and compared between pain-positive and pain-negative patients. There was no significant difference in the whole-brain coherence between the pain-positive and pain-negative groups. However, temporal–temporal coherence differed significantly between the two groups (p = 0.031). Our findings indicate that aberrant synchronization of inter-temporal regions is involved in PD-related pain. This will further our understanding of the mechanisms underlying pain in PD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/brainsci11091224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/brainsci11091224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Frontiers Media SA NIH | Postdoctoral Research in ..., NIH | Shape Analysis Toolbox fo..., NIH | UNC BIRCWH Career Develop... +3 projectsNIH| Postdoctoral Research in Neurodevelopmental Disorders ,NIH| Shape Analysis Toolbox for Medical Image Computing Projects ,NIH| UNC BIRCWH Career Development Program ,NIH| A Longitudinal MRI Study of Infants at Risk for Autism ,NIH| Genetic Liability for Autism and Infant Brain and Behavioral Development ,NIH| The Intellectual and Developmental Disabilities Research Center at CHOP/PennLiying Peng; Liying Peng; Lanfen Lin; Yusen Lin; Yen-wei Chen; Zhanhao Mo; Roza M. Vlasova; Sun Hyung Kim; Alan C. Evans; Stephen R. Dager; Annette M. Estes; Robert C. McKinstry; Kelly N. Botteron; Kelly N. Botteron; Guido Gerig; Robert T. Schultz; Heather C. Hazlett; Heather C. Hazlett; Joseph Piven; Joseph Piven; Catherine A. Burrows; Rebecca L. Grzadzinski; Rebecca L. Grzadzinski; Jessica B. Girault; Jessica B. Girault; Mark D. Shen; Mark D. Shen; Mark D. Shen; Martin A. Styner; Martin A. Styner;The infant brain undergoes a remarkable period of neural development that is crucial for the development of cognitive and behavioral capacities (Hasegawa et al., 2018). Longitudinal magnetic resonance imaging (MRI) is able to characterize the developmental trajectories and is critical in neuroimaging studies of early brain development. However, missing data at different time points is an unavoidable occurrence in longitudinal studies owing to participant attrition and scan failure. Compared to dropping incomplete data, data imputation is considered a better solution to address such missing data in order to preserve all available samples. In this paper, we adapt generative adversarial networks (GAN) to a new application: longitudinal image prediction of structural MRI in the first year of life. In contrast to existing medical image-to-image translation applications of GANs, where inputs and outputs share a very close anatomical structure, our task is more challenging as brain size, shape and tissue contrast vary significantly between the input data and the predicted data. Several improvements over existing GAN approaches are proposed to address these challenges in our task. To enhance the realism, crispness, and accuracy of the predicted images, we incorporate both a traditional voxel-wise reconstruction loss as well as a perceptual loss term into the adversarial learning scheme. As the differing contrast changes in T1w and T2w MR images in the first year of life, we incorporate multi-contrast images leading to our proposed 3D multi-contrast perceptual adversarial network (MPGAN). Extensive evaluations are performed to assess the qualityand fidelity of the predicted images, including qualitative and quantitative assessments of the image appearance, as well as quantitative assessment on two segmentation tasks. Our experimental results show that our MPGAN is an effective solution for longitudinal MR image data imputation in the infant brain. We further apply our predicted/imputed images to two practical tasks, a regression task and a classification task, in order to highlight the enhanced task-related performance following image imputation. The results show that the model performance in both tasks is improved by including the additional imputed data, demonstrating the usability of the predicted images generated from our approach.
Frontiers in Neurosc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.653213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Neurosc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.653213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019SAGE Publications Authors: Michelle Chiu; Anita N Datta;Michelle Chiu; Anita N Datta;pmid: 31530228
Childhood primary angiitis of the central nervous system (cPACNS) is a rare inflammatory disease of brain vessels. The small vessel subtype is diagnosed on brain biopsy and often presents with cognitive and behavioral changes, headaches, and seizures. However, there are few reported cases of super-refractory status epilepticus in children. We present a case of small vessel cPACNS complicated by super-refractory status epilepticus requiring burst suppression for 4 weeks in addition to multiple antiseizure medications and the ketogenic diet. Our patient was also treated with intravenous and oral steroids, intravenous immunoglobulin, and cyclophosphamide before starting maintenance therapy with mycophenolate mofetil. After prolonged rehabilitation, he recovered almost completely and has a normal neurologic examination with rare epileptiform activity on electroencephalogram (EEG). This is one of the longest cases of status epilepticus in small vessel cPACNS in the literature. We illustrate that super-refractory status epilepticus can be the first manifestation of small vessel cPACNS in previously healthy children and that symptomatic management of seizures with concurrent immunosuppression to treat the underlying pathology resulted in favorable neurologic outcomes.
Journal of Child Neu... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0883073819872579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Child Neu... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0883073819872579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 CanadaSPIE-Intl Soc Optical Eng NSERC, CIHRNSERC ,CIHRParikshat Sirpal; Ali Kassab; Philippe Pouliot; Dang Khoa Nguyen; Frédéric Lesage;Abstract. In the context of epilepsy monitoring, electroencephalography (EEG) remains the modality of choice. Functional near-infrared spectroscopy (fNIRS) is a relatively innovative modality that cannot only characterize hemodynamic profiles of seizures but also allow for long-term recordings. We employ deep learning methods to investigate the benefits of integrating fNIRS measures for seizure detection. We designed a deep recurrent neural network with long short-term memory units and subsequently validated it using the CHBMIT scalp EEG database—a compendium of 896 h of surface EEG seizure recordings. After validating our network using EEG, fNIRS, and multimodal data comprising a corpus of 89 seizures from 40 refractory epileptic patients was used as model input to evaluate the integration of fNIRS measures. Following heuristic hyperparameter optimization, multimodal EEG-fNIRS data provide superior performance metrics (sensitivity and specificity of 89.7% and 95.5%, respectively) in a seizure detection task, with low generalization errors and loss. False detection rates are generally low, with 11.8% and 5.6% for EEG and multimodal data, respectively. Employing multimodal neuroimaging, particularly EEG-fNIRS, in epileptic patients, can enhance seizure detection performance. Furthermore, the neural network model proposed and characterized herein offers a promising framework for future multimodal investigations in seizure detection and prediction.
Europe PubMed Centra... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/1.jbo.24.5.051408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Europe PubMed Centra... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/1.jbo.24.5.051408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Oxford University Press (OUP) Akimitsu Suda; Takahiro Osada; Akitoshi Ogawa; Masaki Tanaka; Koji Kamagata; Shigeki Aoki; Nobutaka Hattori; Seiki Konishi;Abstract The right inferior frontal cortex (IFC) is critical to response inhibition. The right IFC referred in the human studies of response inhibition is located in the posterior part of the inferior frontal gyrus and the surrounding regions and consists of multiple areas that implement distinct functions. Recent studies using resting-state functional connectivity have parcellated the cerebral cortex and revealed across-subject variability of parcel-based cerebrocortical networks. However, how the right IFC of individual brains is functionally organized and what functional properties the IFC parcels possess regarding response inhibition remain elusive. In the present functional magnetic resonance imaging study, precision functional mapping of individual human brains was adopted to the parcels in the right IFC to evaluate their functional properties related to response inhibition. The right IFC consisted of six modules or subsets of subregions, and the spatial organization of the modules varied considerably across subjects. Each module revealed unique characteristics of brain activity and its correlation to behavior related to response inhibition. These results provide updated functional features of the IFC and demonstrate the importance of individual-focused approaches in studying response inhibition in the right IFC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/cercor/bhaa188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/cercor/bhaa188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Public Library of Science (PLoS) Min Woo Nam; Jae Min Kim; Jin Hwan Cheong; Je Il Ryu; Myung-Hoon Han;Background and purposeLow body mass index (BMI) at presentation has been reported to be associated with higher incidence and mortality of lung cancer, but studies on the relationship between brain metastasis and BMI at presentation are lacking. This study aimed to evaluate the association between brain metastasis and BMI and bone mineral density (BMD) in NSCLC.MethodsWe retrospectively enrolled patients with non-small cell lung cancer who underwent brain magnetic resonance imaging with contrast within 3 months of diagnosis. The BMI was collected, and the BMD was measured in Hounsfield unit (HU) on initial staging computed tomography scans. The independent relationship between BMI and BMD was assessed using multivariable linear regression according to the presence of brain metastasis.ResultsA total of 356 consecutive NSCLC patients were enrolled in the study over a 8-year period in a single institution. Lower BMI with higher BMD was an independent predictive factor for brain metastasis in patients with NSCLC, relative to the other group (HR, 2.03; 95% CI, 1.21 to 3.40; P = 0.007). We also found a significant negative correlation between BMI and BMD among patients with NSCLC with brain metastases (B, -3.343; 95% confidence interval, -6.352 to -0.333; P = 0.030).ConclusionsBrain metastasis may possibly be associated with lower BMI and higher BMD in NSCLC patients. We expect that these results may facilitate future predictions of brain metastases during the clinical course of NSCLC and enhance our understanding of the underlying mechanisms that link brain metastases and lung cancer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0218825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0218825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 ItalyPublic Library of Science (PLoS) Authors: Fiorella Del Popolo Cristaldi; Giovanni Mento; Michela Sarlo; Giulia Buodo;Fiorella Del Popolo Cristaldi; Giovanni Mento; Michela Sarlo; Giulia Buodo;Intolerance of uncertainty (IU) can influence emotional predictions, constructed by the brain (generation stage) to prearrange action (implementation stage), and update internal models according to incoming stimuli (updating stage). However, neurocomputational mechanisms by which IU affects emotional predictions are unclear. This high-density EEG study investigated if IU predicted event-related potentials (ERPs) and brain sources activity developing along the stages of emotional predictions, as a function of contextual uncertainty. Thirty-six undergraduates underwent a S1-S2 paradigm, with emotional faces and pictures as S1s and S2s, respectively. Contextual uncertainty was manipulated across three blocks, each with 100%, 75%, or 50% S1-S2 emotional congruency. ERPs, brain sources and their relationship with IU scores were analyzed for each stage. IU did not affect prediction generation. During prediction implementation, higher IU predicted larger Contingent Negative Variation in the 75% block, and lower left anterior cingulate cortex and supplementary motor area activations. During prediction updating, as IU increased P2 to positive S2s decreased, along with P2 and Late Positive Potential in the 75% block, and right orbito-frontal cortex activity to emotional S2s. IU was therefore associated with altered uncertainty assessment and heightened attention deployment during implementation, and to uncertainty avoidance, reduced attention to safety cues and disrupted access to emotion regulation strategies during prediction updating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0254045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0254045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Ovid Technologies (Wolters Kluwer Health) Jay Roodselaar; Yifan Zhou; David Leppert; Anja E. Hauser; Eduard Urich; Daniel C. Anthony;ObjectiveTherapies targeting B cells have been used in the clinic for multiple sclerosis (MS). In patients with relapsing MS, anti-CD20 therapy often suppresses relapse activity; yet, their effect on disease progression has been disappointing. Most anti-CD20 therapeutic antibodies are type I, but within the unique microenvironment of the brain, type II antibodies may be more beneficial, as type II antibodies exhibit reduced complement-dependent cytotoxicity and they have an increased capacity to induce direct cell death that is independent of the host immune response.MethodsWe compared the effect of type I with type II anti-CD20 therapy in a new rodent model of secondary progressive MS (SPMS), which recapitulates the principal histopathologic features of MS including meningeal B-cell aggregates. Focal MS-like lesions were induced by injecting heat-killed Mycobacterium tuberculosis into the piriform cortex of MOG-immunized mice. Groups of mice were treated with anti-CD20 antibodies (type I [rituxumab, 10 mg/kg] or type II [GA101, 10 mg/kg]) 4 weeks after lesion initiation, and outcomes were evaluated by immunohistochemistry.ResultsAnti-CD20 therapy decreased the extent of glial activation, significantly decreased the number of B and T lymphocytes in the lesion, and resulted in disruption of the meningeal aggregates. Moreover, at the given dose, the type II anti-CD20 therapy was more efficacious than the type I and also protected against neuronal death.ConclusionsThese results indicate that anti-CD20 may be an effective therapy for SPMS with B-cell aggregates and that the elimination of CD20+ B cells alone is sufficient to cause disruption of aggregates in the brain.
Europe PubMed Centra... arrow_drop_down Neurology: Neuroimmunology & NeuroinflammationArticleLicense: cc-by-nc-ndData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1212/nxi.0000000000000975&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Europe PubMed Centra... arrow_drop_down Neurology: Neuroimmunology & NeuroinflammationArticleLicense: cc-by-nc-ndData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1212/nxi.0000000000000975&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2023 Netherlands, GermanyWiley Authors: Nikos Priovoulos; Icaro Agenor Ferreira de Oliveira; Benedikt A. Poser; David G. Norris; +1 AuthorsNikos Priovoulos; Icaro Agenor Ferreira de Oliveira; Benedikt A. Poser; David G. Norris; Wietske van der Zwaag;doi: 10.1002/hbm.26227
pmid: 36763562
AbstractBOLD fMRI is widely applied in human neuroscience but is limited in its spatial specificity due to a cortical‐depth‐dependent venous bias. This reduces its localization specificity with respect to neuronal responses, a disadvantage for neuroscientific research. Here, we modified a submillimeter BOLD protocol to selectively reduce venous and tissue signal and increase cerebral blood volume weighting through a pulsed saturation scheme (dubbed Arterial Blood Contrast) at 7 T. Adding Arterial Blood Contrast on top of the existing BOLD contrast modulated the intracortical contrast. Isolating the Arterial Blood Contrast showed a response free of pial‐surface bias. The results suggest that Arterial Blood Contrast can modulate the typical fMRI spatial specificity, with important applications in in‐vivo neuroscience.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hbm.26227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hbm.26227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 FinlandElsevier BV Karoliina Uusitalo; Leena Haataja; Virva Saunavaara; Annika Lind; Victor Vorobyev; Joni Tilli; Riitta Parkkola; Sirkku Setänen; Mikael Ekblad; Satu Ekblad; Eeva Ekholm; Linda Grönroos; Leena Haataja; Mira Huhtala; Jere Jaakkola; Eveliina Joensuu; Pentti Kero; Riikka Korja; Katri Lahti; Helena Lapinleimu; Liisa Lehtonen; Tuomo Lehtonen; Marika Leppänen; Annika Lind; Jaakko Matomäki; Jonna Maunu; Petriina Munck; Laura Määttänen; Pekka Niemi; Anna Nyman; Pertti Palo; Riitta Parkkola; Liisi Ripatti; Päivi Rautava; Katriina Saarinen; Tiina Saarinen; Virva Saunavaara; Sirkku Setänen; Matti Sillanpää; Suvi Stolt; Päivi Tuomikoski-Koiranen; Timo Tuovinen; Karoliina Uusitalo; Anniina Väliaho; Milla Ylijoki;pmid: 34339952
Abstract Background Fine motor and coordination problems are frequently reported among adolescents born preterm. We aimed to assess performance in hand coordination tasks and to compare concurrent brain activation between adolescents born very preterm and at term at 13 years. Methods A total of 34 right-handed adolescents born very preterm (gestational age less than 32 weeks/birth weight ≤1500 grams) and 37 controls born at term during 2003 to 2006 in Turku University Hospital, Finland, were recruited. At 13 years, finger opposition and diadochokinesis were assessed, and brain functional magnetic resonance imaging data were acquired while the adolescents performed unimanual hand coordination tasks in response to visual cue. Results Adolescents born very preterm performed similar to controls in hand coordination tasks. The very preterm group evoked greater brain activation than the controls in the right precentral gyrus and in the right postcentral gyrus during left-hand finger opposition and in the right postcentral gyrus during left-hand diadochokinesis. Within the very preterm group, lower gestational age was associated with reduced activation in the left superior parietal lobule during right-hand diadochokinesis. Regarding left-hand tasks, lower gestational age was associated with stronger activation in the right cerebellar lobule V and left cerebellar lobule VI during finger opposition and stronger activation in the right superior parietal lobule during diadochokinesis. Conclusions Very preterm birth affected hand coordination-related brain activation. Most of the effects were found for nondominant hand. Clinical performance during the hand coordination tasks was similar in adolescents born very preterm and controls.
Pediatric Neurology arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pediatrneurol.2021.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average