search
The following results are related to Neuroinformatics. Are you interested to view more results? Visit OpenAIRE - Explore.
495 Research products

  • Neuroinformatics
  • 2014-2023
  • 14. Life underwater

10
arrow_drop_down
Relevance
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bureau Du Colombier, Sarah; Jacobs, Louis; Gesset, Charline; Elie, Pierre; +1 Authors

    [Departement_IRSTEA]Eaux [TR1_IRSTEA]QUASARE; International audience; In the context of the severe decrease in temperate eel abundance, understanding and control of eel maturation has strong interest for scientific and commercial purposes. Possible use of ultrasonography for improvement of sex determination and maturation monitoring in silver eel was investigated. Gonads of 96 Anguilla anguilla silver eels were observed using portable equipment associated to a 6-15MHz probe, and sex determination was tried before artificial induction of maturation. To estimate gonad mass and monitor individual gonadosomatic index (GSI) in females, cross-sectional images were captured at different times of maturation and gonad length was measured at scanning. Two methods were tried for ovary mass estimation using ultrasonography: one based on a linear model and another on calculating ovary volume from a representation of gonad shape. Ultrasonography resulted in 100% success in sex determination. Ovary mass estimated by ultrasonography was strongly correlated to true ovary mass (R2=0.97). The use of a linear model for gonad mass and then GSI estimation seemed more appropriate than the use of a representation of gonad shape. Evolution of GSI estimates during maturation supports possible detection of early inter-individual differences in maturation using ultrasonography in female silver eels. This non-invasive tool can then obviously be exploited to improve sex determination in silver eels caught in the wild and to monitor maturation at the individual level. Ultrasonography thus has great potential for use in eel both for conservation and aquaculture. To our knowledge, this is the first report on the use of ultrasonography on eels or any anguillid species.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fisheries Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fisheries Research
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fisheries Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fisheries Research
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Dadouchi, Florian; Huillery, Julien; Gervaise, Cedric; Mars, Jerome;

    International audience; The use of passive acoustic for the classification, localization, and density estimation of populations of marine mammals is a current area of interest. It is a cheap and an efficient alternative to visual surveys. However, the lack of an efficient automatic detector for unknown marine mammal calls greatly undermines the feasibility of those tasks, especially when dealing with species showing a great variability of calls. This study adds one more step toward the fully automatic detection of unknown bioacoustic signals in impulsive, non-stationary, and colored ocean noise. The detection procedure is a two-steps fully statistical method solely based on the knowledge of the background noise in the spectrogram. The first step models the noise power as a chi-squared distribution, which parameter is estimated. The signal is then detected using a Neyman-Pearson approach, providing a binary spectrogram that contains false and true detections. The second step removes a significant amount of false detections from the binary spectrogram. The time-frequency distribution of false detections is fitted with a correlated binomial distribution, which is used to discriminate patches of detections (signal) from uniformly distributed detections (false alarms). Examples showing the applicability of this method on several real underwater sounds are presented.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nicolas Puillandre; Philippe Bouchet; Thomas F. Duda; S. Kauferstein; +4 Authors

    We present a large-scale molecular phylogeny that includes 320 of the 761 recognized valid species of the cone snails (Conus), one of the most diverse groups of marine molluscs, based on three mitochondrial genes (COI, 16S rDNA and 12S rDNA). This is the first phylogeny of the taxon to employ concatenated sequences of several genes, and it includes more than twice as many species as the last published molecular phylogeny of the entire group nearly a decade ago. Most of the numerous molecular phylogenies published during the last 15 years are limited to rather small fractions of its species diversity. Bayesian and maximum likelihood analyses are mostly congruent and confirm the presence of three previously reported highly divergent lineages among cone snails, and one identified here using molecular data. About 85% of the species cluster in the single Large Major Cade; the others are divided between the Small Major Cade (similar to 12%), the Conus califomicus lineage (one species), and a newly defined clade (similar to 3%). We also define several subclades within the Large and Small major clades, but most of their relationships remain poorly supported. To illustrate the usefulness of molecular phylogenies in addressing specific evolutionary questions, we analyse the evolution of the diet, the biogeography and the toxins of cone snails. All cone snails whose feeding biology is known inject venom into large prey animals and swallow them whole. Predation on polychaete worms is inferred as the ancestral state, and diet shifts to molluscs and fishes occurred rarely. The ancestor of cone snails probably originated from the Indo-Pacific; rather few colonisations of other biogeographic provinces have probably occurred. A new classification of the Conidae, based on the molecular phylogeny, is published in an accompanying paper.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne; Hal-Diderot
    Other literature type . Article . 2014
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Other literature type . 2014
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Molecular Phylogenetics and Evolution
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    143
    citations143
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hyper Article en Ligne; Hal-Diderot
      Other literature type . Article . 2014
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Europe PubMed Central
      Other literature type . 2014
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Molecular Phylogenetics and Evolution
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Striberny, Anja; Jørgensen, Even H.; Klopp, Christophe; Magnanou, Elodie;

    Source at https://doi.org/10.1186/s12864-019-5874-z. © The Author(s). 2019 Background: The Arctic charr (Salvelinus alpinus) has a highly seasonal feeding cycle that comprises long periods of voluntary fasting and a short but intense feeding period during summer. Therefore, the charr represents an interesting species for studying appetite-regulating mechanisms in fish. Results: In this study, we compared the brain transcriptomes of fed and feed deprived charr over a 4 weeks trial during their summer feeding season. Despite prominent differences in body condition between fed and feed deprived charr at the end of the trial, feed deprivation affected the brain transcriptome only slightly. In contrast, the transcriptome differed markedly over time in both fed and feed deprived charr, indicating strong shifts in basic cell metabolic processes possibly due to season, growth, temperature, or combinations thereof. The GO enrichment analysis revealed that many biological processes appeared to change in the same direction in both fed and feed deprived fish. In the feed deprived charr processes linked to oxygen transport and apoptosis were down- and up-regulated, respectively. Known genes encoding for appetite regulators did not respond to feed deprivation. Gene expression of Deiodinase 2 (DIO2), an enzyme implicated in the regulation of seasonal processes in mammals, was lower in response to season and feed deprivation. We further found a higher expression of VGF (non-acronymic) in the feed deprived than in the fed fish. This gene encodes for a neuropeptide associated with the control of energy metabolism in mammals, and has not been studied in relation to regulation of appetite and energy homeostasis in fish. Conclusions: In the Arctic charr, external and endogenous seasonal factors for example the increase in temperature and their circannual growth cycle, respectively, evoke much stronger responses in the brain than 4 weeks feed deprivation. The absence of a central hunger response in feed deprived charr give support for a strong resilience to the lack of food in this high Arctic species. DIO2 and VGF may play a role in the regulation of energy homeostasis and need to be further studied in seasonal fish.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2019
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Genomics
    Article . 2019
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Genomics
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Genomics
    Article . 2019 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Europe PubMed Central
      Article . 2019
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Genomics
      Article . 2019
      Data sources: DOAJ-Articles
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Genomics
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Genomics
      Article . 2019 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ourgaud, M.; Ruitton, S.; Bell, J.D.; Letourneur, Yves; +2 Authors

    We compared the structure of a seagrass fish assemblage near a sewage outlet before and after improvements to wastewater treatment. To determine whether responses by the fish assemblage were due to changes in water quality or to other factors, comparisons were made with the structure of a fish assemblage from a nearby site unaffected by sewage effluent. Total species richness, density and biomass of fish, decreased at both sites over the 30-year period. An increase in mean trophic level near the sewage outlet following improvements in water quality indicated that wastewater treatment had another important effect. This result is consistent with the reductions in food webs supporting pelagic and benthic fishes that typically accompany decreases in nutrient inputs. Although improvements to wastewater treatment explained much of the variation in the structure of the fish assemblage at PC, our results also suggest that fishing and climate change, at both sites.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Pollution Bul...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Pollution Bulletin
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Carlotti, F; Eisenhauer, L.; Campbell, R.; Diaz, Frederic;

    Abstract The spatio-temporal dynamics of a simulated Centropages typicus (Kroyer) population during the year 2001 at the regional scale of the northwestern Mediterranean Sea are addressed using a 3D coupled physical–biogeochemical model. The setup of the coupled biological model comprises a pelagic plankton ecosystem model and a stage-structured population model forced by the 3D velocity and temperature fields provided by an eddy-resolving regional circulation model. The population model for C. typicus ( C. t. below) represents demographic processes through five groups of developmental stages, which depend on underlying individual growth and development processes and are forced by both biotic (prey and predator fields) and abiotic (temperature, advection) factors from the coupled physical–biogeochemical model. The objective is to characterize C. t. ontogenic habitats driven by physical and trophic processes. The annual dynamics are presented for two of the main oceanographic stations in the Gulf of Lions, which are representative of shelf and open sea conditions, while the spatial distributions over the whole area are presented for three dates during the year, in early and late spring and in winter. The simulated spatial patterns of C. t. developmental stages are closely related to mesoscale hydrodynamic features and circulation patterns. The seasonal and spatial distributions on the Gulf of Lions shelf depend on the seasonal interplay between the Rhone river plume, the mesoscale eddies on the shelf and the Northern Current acting as either as a dynamic barrier between the shelf and the open sea or allowing cross-shelf exchanges. In the central gyre of the northwestern Mediterranean Sea, the patchiness of plankton is tightly linked to mesoscale frontal systems, surface eddies and filaments and deep gradients. Due to its flexibility in terms of its diet, C. t. succeeds in maintaining its population in both coastal and offshore areas year round. The simulations suggest that the winter–spring food conditions are more favorable on the shelf for C. t. , whereas in late summer and fall, the offshore depth-integrated food biomasses represent a larger resource for C. t. , particularly when mesoscale structures and vertical discontinuities increase food patchiness. The development and reproduction of C. t. depend on the prey field within the mesoscale structures that induce a contrasting spatial distribution of successive developmental stages on a given observation date. In late fall and winter, the results of the model suggest the existence of three refuge areas where the population maintains winter generations near the coast and within the Rhone River plume, or offshore within canyons within the shelf break, or in the frontal system related to the Northern Current. The simulated spatial and temporal distributions as well as the life cycle and physiological features of C. t. are discussed in light of recent reviews on the dynamics of C. t. in the northwestern Mediterranean Sea.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Le Duff, M.; Dumas, P.; Cohen, O.; Allenbach, M.;

    International audience; This paper presents a project carried out on Ouvea island (New Caledonia). It is funded by the European Union (Program INTEGRE) and the French Ministry of overseas territories (Program MOM). The aim of this project is to monitor coastal evolution of sandy beaches that suffer from erosion. It also focuses on local population involvement in coastal management. The study aims at obtaining in situ data concerning the impacts of rapidly developing phenomena and gaining a better understanding of shoreline dynamics. The main purpose of this communication is to present this methodological approach for coastal erosion monitoring using participatory management. The beach profiles measurements are performed by local people using a simple method, such as developed by Emery (Limnology and oceanography 6:90–93, 1961). In an area of the Pacific where resources are sometimes limited, the aim is to provide methods for studying the coastal dynamics affecting small, remote islands. On Ouvea, a network of volunteers has been set up to conduct the study in conjunction with local government authorities and traditional leaders. The approach is important for Ouvea in particular, but can be used on any Pacific island where land-use planning and management fall almost exclusively under the purview of traditional leaders. This work contributes towards developing integrated coastal management that involves civil society in the climate-change adaptation discussion.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Hyper Article en Ligne; Hal-Diderot
    Other literature type . Part of book or chapter of book . 2017
    ResearchGate Data
    Presentation . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Frédéric Beau; François Brischoux;

    Fish-farming can lead to eutrophication of freshwater environments through the increase in organic matter resulting from food supplementation and fish wastes. Eutrophication can induce an excessive development of plants and algae on various substrates, including living organisms (algal epibiosis). Although algal epibiosis has been shown to reduce mobility by increasing drag in marine species, its consequences on host species in freshwater ecosystems remain poorly known. In this study, we investigated the individual (age and sex) and environmental (extensive versus intensive fish-farming) determinants of epizoic algae presence and abundance on European pond turtles (Emys orbicularis). We also explored the potential consequences of algal epibiosis on fitness-related traits of E. orbicularis. Based on a large sample size (1112 turtles from 23 ponds), we found that the abundance of algae growing on turtles increased during spring and summer. However, such increase was different across ages and sex; presumably reflecting the influence of thermoregulation (required to increase metabolic rates to sustain growth and reproduction) and thus, periodical drying of the shell, in reducing algal cover. We also found that intensive fish-farming increased algal epibiosis, especially when fish-farming involved food supplementation. Finally, we found that adult female body condition and reproduction of turtles were negatively linked to algal cover, thereby suggesting a potential negative impact of algal fouling on some fitness-related traits of adult female turtles. Future studies should usefully assess the demographic consequences of algal epibiosis induced by fish farming in this long-lived vertebrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of Natur...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of Nature
    Article . 2021 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2021
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of Natur...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of Nature
      Article . 2021 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      Hal-Diderot
      Article . 2021
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sophie Lafon;

    La conservation marine est devenue un enjeu mondial. Les aires marines protégées sont maintenant un instrument au coeur des débats. Dans cette étude, est analysé le dialogue qui prit place durant la création du parc naturel marin de l’estuaire de la Gironde et de la mer des Pertuis dans le sud-ouest de la France en avril 2015. Cette étude analyse les différentes étapes de la concertation réalisée en amont de la création du parc marin et observe l’appropriation des enjeux (notamment environnementaux) par les participants. Cette étude montre que cette concertation permet l’appropriation des enjeux environnementaux grâce à la co-construction de connaissances socio-économiques et environnementales notamment autour de la question des ressources halieutiques. L’analyse des entretiens auprès des participants permet d’identifier également comment les différentes tensions advenues pendant le processus ont contribué à préparer la décision. Marine conservation is now an international issue. Protected marine areas are now a tool strongly discussed. In this study, the process of dialogue which took place during the creation of a recent park, the Pertuis and Gironde natural park in southwest France is analysed, in April 2015. Our research analyzes the different steps in the talk relating to the implementation of the marine park, and observes the appropriation of issues (especially environmental issues) by participants. This paper demonstrates that the dialogue process allows the co-construction of knowledge socio-économic and environnemental, especially for fish resources. The research identifies how the different sources of friction throughout the process contributed to the decision.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VertigOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VertigO
    Article . 2017 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    OpenEdition
    Article . 2017
    Data sources: OpenEdition
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VertigO
    Article . 2017
    Data sources: DOAJ-Articles
    Érudit
    Other literature type
    Data sources: Érudit
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VertigOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VertigO
      Article . 2017 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      OpenEdition
      Article . 2017
      Data sources: OpenEdition
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VertigO
      Article . 2017
      Data sources: DOAJ-Articles
      Érudit
      Other literature type
      Data sources: Érudit
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Thomas Desvignes; Peter Batzel; Jason Sydes; B. Frank Eames; +1 Authors

    AbstractMicroRNAs (miRNAs) can have tissue-specific expression and functions; they can originate from dedicated miRNA genes, from non-canonical miRNA genes, or from mirror-miRNA genes and can also experience post-transcriptional variations. It remains unclear, however, which mechanisms of miRNA production or modification are tissue-specific and the extent of their evolutionary conservation. To address these issues, we developed the software Prost! (PRocessing Of Short Transcripts), which, among other features, allows accurate quantification of mature miRNAs, takes into account post-transcriptional processing, such as nucleotide editing, and helps identify mirror-miRNAs. Here, we applied Prost! to annotate and analyze miRNAs in three-spined stickleback (Gasterosteus aculeatus), a model fish for evolutionary biology reported to have a miRNome larger than most teleost fish. Zebrafish (Danio rerio), a distantly related teleost with a well-known miRNome, served as comparator. Despite reports suggesting that stickleback had a large miRNome, results showed that stickleback has 277 evolutionary-conserved mir genes and 366 unique mature miRNAs (excluding mir430 gene replicates and the vaultRNA-derived mir733), similar to zebrafish. In addition, small RNA sequencing data from brain, heart, testis, and ovary in both stickleback and zebrafish identified suites of mature miRNAs that display organ-specific enrichment, which is, for many miRNAs, evolutionarily-conserved. These data also supported the hypothesis that evolutionarily-conserved, organ-specific mechanisms regulate miRNA post-transcriptional variations. In both stickleback and zebrafish, miR2188-5p was edited frequently with similar nucleotide editing patterns in the seed sequence in various tissues, and the editing rate was organ-specific with higher editing in the brain. In summary, Prost! is a critical new tool to identify and understand small RNAs and can help clarify a species’ miRNA biology, as shown here for an important fish model for the evolution of developmental mechanisms, and can provide insight into organ-specific expression and evolutionary-conserved miRNA post-transcriptional mechanisms.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2019
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    bioRxiv
    Preprint . 2018
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article . 2019
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article . Preprint . 2019 . Peer-reviewed
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    39
    citations39
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Europe PubMed Central
      Article . 2019
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      bioRxiv
      Preprint . 2018
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article . 2019
      Data sources: DOAJ-Articles
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article . Preprint . 2019 . Peer-reviewed
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Neuroinformatics. Are you interested to view more results? Visit OpenAIRE - Explore.
495 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bureau Du Colombier, Sarah; Jacobs, Louis; Gesset, Charline; Elie, Pierre; +1 Authors

    [Departement_IRSTEA]Eaux [TR1_IRSTEA]QUASARE; International audience; In the context of the severe decrease in temperate eel abundance, understanding and control of eel maturation has strong interest for scientific and commercial purposes. Possible use of ultrasonography for improvement of sex determination and maturation monitoring in silver eel was investigated. Gonads of 96 Anguilla anguilla silver eels were observed using portable equipment associated to a 6-15MHz probe, and sex determination was tried before artificial induction of maturation. To estimate gonad mass and monitor individual gonadosomatic index (GSI) in females, cross-sectional images were captured at different times of maturation and gonad length was measured at scanning. Two methods were tried for ovary mass estimation using ultrasonography: one based on a linear model and another on calculating ovary volume from a representation of gonad shape. Ultrasonography resulted in 100% success in sex determination. Ovary mass estimated by ultrasonography was strongly correlated to true ovary mass (R2=0.97). The use of a linear model for gonad mass and then GSI estimation seemed more appropriate than the use of a representation of gonad shape. Evolution of GSI estimates during maturation supports possible detection of early inter-individual differences in maturation using ultrasonography in female silver eels. This non-invasive tool can then obviously be exploited to improve sex determination in silver eels caught in the wild and to monitor maturation at the individual level. Ultrasonography thus has great potential for use in eel both for conservation and aquaculture. To our knowledge, this is the first report on the use of ultrasonography on eels or any anguillid species.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fisheries Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fisheries Research
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fisheries Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fisheries Research
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Dadouchi, Florian; Huillery, Julien; Gervaise, Cedric; Mars, Jerome;

    International audience; The use of passive acoustic for the classification, localization, and density estimation of populations of marine mammals is a current area of interest. It is a cheap and an efficient alternative to visual surveys. However, the lack of an efficient automatic detector for unknown marine mammal calls greatly undermines the feasibility of those tasks, especially when dealing with species showing a great variability of calls. This study adds one more step toward the fully automatic detection of unknown bioacoustic signals in impulsive, non-stationary, and colored ocean noise. The detection procedure is a two-steps fully statistical method solely based on the knowledge of the background noise in the spectrogram. The first step models the noise power as a chi-squared distribution, which parameter is estimated. The signal is then detected using a Neyman-Pearson approach, providing a binary spectrogram that contains false and true detections. The second step removes a significant amount of false detections from the binary spectrogram. The time-frequency distribution of false detections is fitted with a correlated binomial distribution, which is used to discriminate patches of detections (signal) from uniformly distributed detections (false alarms). Examples showing the applicability of this method on several real underwater sounds are presented.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!