- home
- Search
Loading
description Publicationkeyboard_double_arrow_right Article 2023 Netherlands, GermanyWiley Authors: Nikos Priovoulos; Icaro Agenor Ferreira de Oliveira; Benedikt A. Poser; David G. Norris; +1 AuthorsNikos Priovoulos; Icaro Agenor Ferreira de Oliveira; Benedikt A. Poser; David G. Norris; Wietske van der Zwaag;doi: 10.1002/hbm.26227
pmid: 36763562
AbstractBOLD fMRI is widely applied in human neuroscience but is limited in its spatial specificity due to a cortical‐depth‐dependent venous bias. This reduces its localization specificity with respect to neuronal responses, a disadvantage for neuroscientific research. Here, we modified a submillimeter BOLD protocol to selectively reduce venous and tissue signal and increase cerebral blood volume weighting through a pulsed saturation scheme (dubbed Arterial Blood Contrast) at 7 T. Adding Arterial Blood Contrast on top of the existing BOLD contrast modulated the intracortical contrast. Isolating the Arterial Blood Contrast showed a response free of pial‐surface bias. The results suggest that Arterial Blood Contrast can modulate the typical fMRI spatial specificity, with important applications in in‐vivo neuroscience.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hbm.26227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hbm.26227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FranceIOP Publishing EC | EoCoE-II, EC | EUROfusionEC| EoCoE-II ,EC| EUROfusionR Varennes; X Garbet; L Vermare; Y Sarazin; G Dif-Pradalier; V Grandgirard; P Ghendrih; P Donnel; M Peret; K Obrejan; E Bourne;Abstract The effect of magnetic field ripple on tokamak plasma without turbulence is studied numerically and augmented with a reduced analytical model that includes neoclassical processes in the presence of non-axisymmetric perturbation and stochastic transport. For this study, a magnetic field ripple perturbation has been implemented in the GYSELA gyrokinetic code. This implementation has been verified thanks to a test of toroidal angular momentum conservation. The GYSELA code was then successfully benchmarked against the NEO code, which solves the drift kinetic equation, and against the reduced model in the collisionality range ν ⋆ ∈ [0.05–0.5] for several amplitudes of the magnetic ripple. An observation, shared by the model, the NEO code and GYSELA simulations is that the thermal drive of the mean poloidal velocity—measured by the k V P coefficient—decreases sharply for large yet experimentally relevant magnetic ripple amplitudes, and may even change sign.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6587/acb79a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6587/acb79a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United Kingdom, Netherlands, Belgium, GermanyWiley WT | King's College London Med..., NIH | Quantitative (Perfusion a..., NWO | A non-invasive characteri... +3 projectsWT| King's College London Medical Engineering Centre of Research Excellence ,NIH| Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response ,NWO| A non-invasive characterisation of active multiple sclerosis lesions through chemical exchange saturation transfer (CEST) imaging ,EC| ImPRESS ,NIH| New treatment monitoring biomarkers for brain tumors using multiparametric MRI with machine learning ,FWF| 3D 2HG mapping as biomarker for IDH-mutation in gliomaLydiane Hirschler; Nico Sollmann; Bárbara Schmitz‐Abecassis; Joana Pinto; Fatemehsadat Arzanforoosh; Frederik Barkhof; Thomas Booth; Marta Calvo‐Imirizaldu; Guilherme Cassia; Marek Chmelik; Patricia Clement; Ece Ercan; Maria A. Fernández‐Seara; Julia Furtner; Elies Fuster‐Garcia; Matthew Grech‐Sollars; Nazmiye Tugay Guven; Gokce Hale Hatay; Golestan Karami; Vera C. Keil; Mina Kim; Johan A. F. Koekkoek; Simran Kukran; Laura Mancini; Ruben Emanuel Nechifor; Alpay Özcan; Esin Ozturk‐Isik; Senol Piskin; Kathleen Schmainda; Siri F. Svensson; Chih‐Hsien Tseng; Saritha Unnikrishnan; Frans Vos; Esther Warnert; Moss Y. Zhao; Radim Jancalek; Teresa Nunes; Kyrre E. Emblem; Marion Smits; Jan Petr; Gilbert Hangel;Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast‐enhanced MRI, arterial spin labeling, diffusion‐weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility‐weighted imaging, MRI‐PET, MR elastography, and MR‐based radiomics applications.Evidence Level: 3Technical Efficacy: Stage 2
Ghent University Aca... arrow_drop_down Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyAmsterdam UMC (VU Amsterdam) - Institutional RepositoryArticle . 2023Data sources: Amsterdam UMC (VU Amsterdam) - Institutional RepositoryJournal of Magnetic Resonance ImagingOther literature type . Article . 2023Spiral - Imperial College Digital RepositoryArticle . 2023Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jmri.28662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 17 Powered bymore_vert Ghent University Aca... arrow_drop_down Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyAmsterdam UMC (VU Amsterdam) - Institutional RepositoryArticle . 2023Data sources: Amsterdam UMC (VU Amsterdam) - Institutional RepositoryJournal of Magnetic Resonance ImagingOther literature type . Article . 2023Spiral - Imperial College Digital RepositoryArticle . 2023Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jmri.28662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Switzerland, FranceFrontiers Media SA ANR | LAMIANR| LAMIMariam Bayram; Richard Palluel-Germain; Florent Lebon; Edith Durand; Sylvain Harquel; Marcela Perrone-Bertolotti;International audience; Studies showed that motor expertise was found to induce improvement in language processing. Grounded and situated approaches attributed this effect to an underlying automatic simulation of the motor experience elicited by action words, similar to motor imagery (MI), and suggest shared representations of action conceptualization. Interestingly, recent results also suggest that the mental simulation of action by MI training induces motor-system modifications and improves motor performance. Consequently, we hypothesize that, since MI training can induce motor-system modifications, it could be used to reinforce the functional connections between motor and language system, and could thus lead to improved language performance. Here, we explore these potential interactions by reviewing recent fundamental and clinical literature in the action-language and MI domains. We suggested that exploiting the link between action language and MI could open new avenues for complementary language improvement programs. We summarize the current literature to evaluate the rationale behind this novel training and to explore the mechanisms underlying MI and its impact on language performance.
Frontiers in Human N... arrow_drop_down Frontiers in Human NeuroscienceArticle . 2023Infoscience - EPFL scientific publicationsOther literature typeData sources: Infoscience - EPFL scientific publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnhum.2023.982849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Human N... arrow_drop_down Frontiers in Human NeuroscienceArticle . 2023Infoscience - EPFL scientific publicationsOther literature typeData sources: Infoscience - EPFL scientific publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnhum.2023.982849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Other literature type , Article 2023Embargo end date: 01 Jan 2023 FrancearXiv Majhi, Snehashis; Dai, Rui; Kong, Quan; Garattoni, Lorenzo; Francesca, Gianpiero; Bremond, Francois;Video anomaly detection in surveillance systems with only video-level labels (i.e. weakly-supervised) is challenging. This is due to, (i) the complex integration of human and scene based anomalies comprising of subtle and sharp spatio-temporal cues in real-world scenarios, (ii) non-optimal optimization between normal and anomaly instances under weak supervision. In this paper, we propose a Human-Scene Network to learn discriminative representations by capturing both subtle and strong cues in a dissociative manner. In addition, a self-rectifying loss is also proposed that dynamically computes the pseudo temporal annotations from video-level labels for optimizing the Human-Scene Network effectively. The proposed Human-Scene Network optimized with self-rectifying loss is validated on three publicly available datasets i.e. UCF-Crime, ShanghaiTech and IITB-Corridor, outperforming recently reported state-of-the-art approaches on five out of the six scenarios considered.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2023Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2301.07923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2023Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2301.07923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Elsevier BV Léonie Borne; Ye Tian; Michelle K. Lupton; Johan N. van der Meer; Jayson Jeganathan; Bryan Paton; Nikitas Koussis; Christine C. Guo; Gail A. Robinson; Jurgen Fripp; Andrew Zalesky; Michael Breakspear;pmid: 36863548
The functional organization of the hippocampus mirrors that of the cortex, changing smoothly along connectivity gradients and abruptly at inter-areal boundaries. Hippocampal-dependent cognitive processes require flexible integration of these hippocampal gradients into functionally related cortical networks. To understand the cognitive relevance of this functional embedding, we acquired fMRI data while participants viewed brief news clips, either containing or lacking recently familiarized cues. Participants were 188 healthy mid-life adults and 31 adults with mild cognitive impairment (MCI) or Alzheimer's disease (AD). We employed a recently developed technique - connectivity gradientography - to study gradually changing patterns of voxel to whole brain functional connectivity and their sudden transitions. We observed that functional connectivity gradients of the anterior hippocampus map onto connectivity gradients across the default mode network during these naturalistic stimuli. The presence of familiar cues in the news clips accentuates a stepwise transition across the boundary from the anterior to the posterior hippocampus. This functional transition is shifted in the posterior direction in the left hippocampus of individuals with MCI or AD. These findings shed new light on the functional integration of hippocampal connectivity gradients into large-scale cortical networks, how these adapt with memory context and how these change in the presence of neurodegenerative disease.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2023.119996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2023.119996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023 FranceAmerican Physical Society (APS) ANR | ULNEANR| ULNEAuthors: Adam Rançon; Nicolas Dupuis;Adam Rançon; Nicolas Dupuis;We determine the two-body contact in a planar Bose gas confined by a transverse harmonic potential, using the nonperturbative functional renormalization group. We use the three-dimensional thermodynamic definition of the contact where the latter is related to the derivation of the pressure of the quasi-two-dimensional system with respect to the three-dimensional scattering length of the bosons. Without any free parameter, we find a remarkable agreement with the experimental data of Zou {\it et al.} [Nat. Comm. {\bf 12}, 760 (2021)] from low to high temperatures, including the vicinity of the Berezinskii-Kosterlitz-Thouless transition. We also show that the short-distance behavior of the pair distribution function and the high-momentum behavior of the momentum distribution are determined by two contacts: the three-dimensional contact for length scales smaller than the characteristic length $\ell_z=\sqrt{\hbar/m\omega_z}$ of the harmonic potential and, for length scales larger than $\ell_z$, an effective two-dimensional contact, related to the three-dimensional one by a geometric factor depending on $\ell_z$. Comment: v1) 6+10 pages, 2+1 figures; v2) 6+12 pages, 2+4 figures, published version
arXiv.org e-Print Ar... arrow_drop_down HAL - Université de Lille; Hyper Article en LigneOther literature type . Article . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevlett.130.263401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down HAL - Université de Lille; Hyper Article en LigneOther literature type . Article . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevlett.130.263401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Elsevier BV Arash Kamali; Mahdie Hosseini; Anusha Gandhi; John A. Lincoln; Khader M. Hasan;pmid: 37488033
The hypothalamus plays essential roles in the human brain by regulating feeding, fear, aggression, reproductive behaviors, and autonomic activities. The septal nuclei and the bed nucleus of stria terminalis (BNST) are also known to be involved in control of autonomic, motivational, learning, emotional and associative processes in the human brain. Multiple animal dissection studies have revealed direct connectivity between central limbic gray matter nuclei and occipital cortex, particularly from the hypothalamic, septal and BNST nuclei. However, the detailed anatomy of this connectivity in the human brain has yet to be determined. The primary objective of this study was to explore the utility of high spatial and high angular resolution diffusion weighted tractography techniques for mapping the connectivity pathways between the occipital cortex and central limbic gray matter nuclei in the human brain. We studied 30 healthy adult human brains, delineated, and reconstructed the trajectory of the occipito-hypothalamic/septal/BNST for the first time in the human brain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.brainres.2023.148510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.brainres.2023.148510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu- Proton FLASH Radiation Therapy and Immune Infiltration: Evaluation in an Orthotopic Glioma Rat Model
description Publicationkeyboard_double_arrow_right Article 2023 FranceElsevier BV Lorea Iturri; Annaïg Bertho; Charlotte Lamirault; Marjorie Juchaux; Cristèle Gilbert; Julie Espenon; Catherine Sebrie; Laurène Jourdain; Frédéric Pouzoulet; Pierre Verrelle; Ludovic De Marzi; Yolanda Prezado;pmid: 36563907
FLASH radiation therapy (FLASH-RT) is a promising radiation technique that uses ultrahigh doses of radiation to increase the therapeutic window of the treatment. FLASH-RT has been observed to provide normal tissue sparing at high dose rates and similar tumor control compared with conventional RT, yet the biological processes governing these radiobiological effects are still unknown. In this study, we sought to investigate the potential immune response generated by FLASH-RT in a high dose of proton therapy in an orthotopic glioma rat model.We cranially irradiated rats with a single high dose (25 Gy) using FLASH dose rate proton irradiation (257 ± 2 Gy/s) or conventional dose rate proton irradiation (4 ± 0.02 Gy/s). We first assessed the protective FLASH effect that resulted in our setup through behavioral studies in naïve rats. This was followed by a comprehensive analysis of immune cells in blood, healthy tissue of the brain, and tumor microenvironment by flow cytometry.Proton FLASH-RT spared memory impairment produced by conventional high-dose proton therapy and induced a similar tumor infiltrating lymphocyte recruitment. Additionally, a general neuroinflammation that was similar in both dose rates was observed.Overall, this study demonstrated that FLASH proton therapy offers a neuro-protective effect even at high doses while mounting an effective lymphoid immune response in the tumor.
International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrobp.2022.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrobp.2022.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu description Publicationkeyboard_double_arrow_right Other literature type 2023 EnglishHAL CCSD Authors: Rohmer, Jérôme; Grégor, Thierry; Alsuhaibani, Abdulrahman;Rohmer, Jérôme; Grégor, Thierry; Alsuhaibani, Abdulrahman;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______166::e0f7e719b4cadb248f5f8d53cf93b0cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______166::e0f7e719b4cadb248f5f8d53cf93b0cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2023 Netherlands, GermanyWiley Authors: Nikos Priovoulos; Icaro Agenor Ferreira de Oliveira; Benedikt A. Poser; David G. Norris; +1 AuthorsNikos Priovoulos; Icaro Agenor Ferreira de Oliveira; Benedikt A. Poser; David G. Norris; Wietske van der Zwaag;doi: 10.1002/hbm.26227
pmid: 36763562
AbstractBOLD fMRI is widely applied in human neuroscience but is limited in its spatial specificity due to a cortical‐depth‐dependent venous bias. This reduces its localization specificity with respect to neuronal responses, a disadvantage for neuroscientific research. Here, we modified a submillimeter BOLD protocol to selectively reduce venous and tissue signal and increase cerebral blood volume weighting through a pulsed saturation scheme (dubbed Arterial Blood Contrast) at 7 T. Adding Arterial Blood Contrast on top of the existing BOLD contrast modulated the intracortical contrast. Isolating the Arterial Blood Contrast showed a response free of pial‐surface bias. The results suggest that Arterial Blood Contrast can modulate the typical fMRI spatial specificity, with important applications in in‐vivo neuroscience.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hbm.26227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hbm.26227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FranceIOP Publishing EC | EoCoE-II, EC | EUROfusionEC| EoCoE-II ,EC| EUROfusionR Varennes; X Garbet; L Vermare; Y Sarazin; G Dif-Pradalier; V Grandgirard; P Ghendrih; P Donnel; M Peret; K Obrejan; E Bourne;Abstract The effect of magnetic field ripple on tokamak plasma without turbulence is studied numerically and augmented with a reduced analytical model that includes neoclassical processes in the presence of non-axisymmetric perturbation and stochastic transport. For this study, a magnetic field ripple perturbation has been implemented in the GYSELA gyrokinetic code. This implementation has been verified thanks to a test of toroidal angular momentum conservation. The GYSELA code was then successfully benchmarked against the NEO code, which solves the drift kinetic equation, and against the reduced model in the collisionality range ν ⋆ ∈ [0.05–0.5] for several amplitudes of the magnetic ripple. An observation, shared by the model, the NEO code and GYSELA simulations is that the thermal drive of the mean poloidal velocity—measured by the k V P coefficient—decreases sharply for large yet experimentally relevant magnetic ripple amplitudes, and may even change sign.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6587/acb79a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6587/acb79a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United Kingdom, Netherlands, Belgium, GermanyWiley WT | King's College London Med..., NIH | Quantitative (Perfusion a..., NWO | A non-invasive characteri... +3 projectsWT| King's College London Medical Engineering Centre of Research Excellence ,NIH| Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response ,NWO| A non-invasive characterisation of active multiple sclerosis lesions through chemical exchange saturation transfer (CEST) imaging ,EC| ImPRESS ,NIH| New treatment monitoring biomarkers for brain tumors using multiparametric MRI with machine learning ,FWF| 3D 2HG mapping as biomarker for IDH-mutation in gliomaLydiane Hirschler; Nico Sollmann; Bárbara Schmitz‐Abecassis; Joana Pinto; Fatemehsadat Arzanforoosh; Frederik Barkhof; Thomas Booth; Marta Calvo‐Imirizaldu; Guilherme Cassia; Marek Chmelik; Patricia Clement; Ece Ercan; Maria A. Fernández‐Seara; Julia Furtner; Elies Fuster‐Garcia; Matthew Grech‐Sollars; Nazmiye Tugay Guven; Gokce Hale Hatay; Golestan Karami; Vera C. Keil; Mina Kim; Johan A. F. Koekkoek; Simran Kukran; Laura Mancini; Ruben Emanuel Nechifor; Alpay Özcan; Esin Ozturk‐Isik; Senol Piskin; Kathleen Schmainda; Siri F. Svensson; Chih‐Hsien Tseng; Saritha Unnikrishnan; Frans Vos; Esther Warnert; Moss Y. Zhao; Radim Jancalek; Teresa Nunes; Kyrre E. Emblem; Marion Smits; Jan Petr; Gilbert Hangel;Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast‐enhanced MRI, arterial spin labeling, diffusion‐weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility‐weighted imaging, MRI‐PET, MR elastography, and MR‐based radiomics applications.Evidence Level: 3Technical Efficacy: Stage 2
Ghent University Aca... arrow_drop_down Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyAmsterdam UMC (VU Amsterdam) - Institutional RepositoryArticle . 2023Data sources: Amsterdam UMC (VU Amsterdam) - Institutional RepositoryJournal of Magnetic Resonance ImagingOther literature type . Article . 2023Spiral - Imperial College Digital RepositoryArticle . 2023Data sources: Spiral - Imperial College Digital Repository