Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unfolding the direct connectivity of the occipital cortex with the hypothalamic, septal and BNST nuclei of the human brain

Authors: Arash, Kamali; Mahdie, Hosseini; Anusha, Gandhi; John A, Lincoln; Khader M, Hasan;

Unfolding the direct connectivity of the occipital cortex with the hypothalamic, septal and BNST nuclei of the human brain

Abstract

The hypothalamus plays essential roles in the human brain by regulating feeding, fear, aggression, reproductive behaviors, and autonomic activities. The septal nuclei and the bed nucleus of stria terminalis (BNST) are also known to be involved in control of autonomic, motivational, learning, emotional and associative processes in the human brain. Multiple animal dissection studies have revealed direct connectivity between central limbic gray matter nuclei and occipital cortex, particularly from the hypothalamic, septal and BNST nuclei. However, the detailed anatomy of this connectivity in the human brain has yet to be determined. The primary objective of this study was to explore the utility of high spatial and high angular resolution diffusion weighted tractography techniques for mapping the connectivity pathways between the occipital cortex and central limbic gray matter nuclei in the human brain. We studied 30 healthy adult human brains, delineated, and reconstructed the trajectory of the occipito-hypothalamic/septal/BNST for the first time in the human brain.

Keywords

Adult, Diffusion Tensor Imaging, General Neuroscience, Hypothalamus, Animals, Humans, Brain, Septal Nuclei, Occipital Lobe, Neurology (clinical), Molecular Biology, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Neuroinformatics
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.