Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Opinion in N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience

Authors: Karen D. Ersche; Guy B. Williams; Trevor W. Robbins; Edward T. Bullmore;

Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience

Abstract

Since the first study in stimulant-dependent individuals using structural MRI was published fifteen years ago, much evidence has accumulated on brain abnormalities associated with stimulant drug dependence. Here we conducted a voxel-based morphometry meta-analysis of published MRI data in stimulant-dependent individuals to clarify the most robust abnormalities underlying the disorder. We found that neuroimaging studies in stimulant-dependent individuals consistently report a gray matter decline in the prefrontal cortex regions associated with self-regulation and self-awareness. One of the next key questions that neuroimaging research today needs to address is the question of causality, namely to what extent these brain abnormalities are caused by the toxic effects of drug exposure, or the possibility that these may have predated drug-taking and even predisposed individuals for the development of drug dependence. Although the question of causality has not yet been answered completely, there has been significant progress made to date.

Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: medicine.medical_specialty Brain mapping Neuroimaging medicine Structural brain abnormalities Prefrontal cortex Psychiatry Meta-analysis Stimulant drug Psychology Neuroscience Addiction vulnerability

Keywords

Substance-Related Disorders, Neuroscience(all), Neuroimaging, Animals, Humans, Brain Mapping, General Neuroscience, Brain, Central Nervous System Stimulants

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    182
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    182
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
182
Top 1%
Top 10%
Top 1%
hybrid
Related to Research communities
Neuroinformatics