Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroImagearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
NeuroImage
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
NeuroImage
Article . 2009
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Age-related changes in topological patterns of large-scale brain functional networks during memory encoding and recognition

Authors: Liang Wang; Yanfang Li; Paul D. Metzak; Yong He; Todd S. Woodward;

Age-related changes in topological patterns of large-scale brain functional networks during memory encoding and recognition

Abstract

In this study we used functional magnetic resonance imaging to investigate age-related changes in large-scale brain functional networks during memory encoding and recognition in 12 younger and 16 older adults. For each participant, functional brain networks were constructed by computing temporal correlation matrices of 90 brain regions and analyzed using graph theoretical approaches. We found the age-related changes mainly in the long-range connections with widespread reductions associated with aging in the fronto-temporal and temporo-parietal regions, and a few age-related increases in the posterior parietal regions. Graph theoretical analysis revealed that the older adults had longer path lengths linking different regions in the functional brain networks as compared to the younger adults. Further analysis indicated that the increases in shortest path length in the networks were combined with the loss of long-range connections. Finally, we showed that for older adults, frontal areas played reduced roles in the network (reduced regional centrality), whereas several default-mode regions played increased roles relative to younger subjects (increased regional centrality). Together, our results suggest that normal aging is associated with disruption of large-scale brain systems during the performance of memory tasks, which provides novel insights into the understanding of age-related decline in multiple cognitive functions.

Subjects by Vocabulary

Microsoft Academic Graph classification: Brain mapping Developmental psychology Functional networks Age related medicine medicine.diagnostic_test Cognition Shortest path problem Graph (abstract data type) Psychology Functional magnetic resonance imaging Centrality Neuroscience

Keywords

Adult, Male, Aging, Cognitive Neuroscience, Models, Neurological, Neuropsychological Tests, Young Adult, Memory, Neural Pathways, Humans, Aged, Aged, 80 and over, Brain Mapping, Brain, Recognition, Psychology, Magnetic Resonance Imaging, Neurology, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 10%
Top 1%
gold
Funded by
CIHR
Project
  • Funder: Canadian Institutes of Health Research (CIHR)
Related to Research communities
Neuroinformatics
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.