Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neural En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neural Engineering
Article . 2021 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
versions View all 2 versions

Characterizing pink and white noise in the human electroencephalogram

Authors: Robert J. Barry; Frances M. De Blasio;

Characterizing pink and white noise in the human electroencephalogram

Abstract

Abstract Objective. The power spectrum of the human electroencephalogram (EEG) as a function of frequency is a mix of brain oscillations (Osc) (e.g. alpha activity around 10 Hz) and non-Osc or noise of uncertain origin. ‘White noise’ is uniformly distributed over frequency, while ‘pink noise’ has an inverse power-frequency relation (power ∝ 1/f). Interest in EEG pink noise has been growing, but previous human estimates appear methodologically flawed. We propose a new approach to extract separate valid estimates of pink and white noise from an EEG power spectrum. Approach. We use simulated data to demonstrate its effectiveness compared with established procedures, and provide an illustrative example from a new resting eyes-open (EO) and eyes-closed (EC) dataset. The topographic characteristics of the obtained pink and white noise estimates are examined, as is the alpha power in this sample. Main results. Valid pink and white noise estimates were successfully obtained for each of our 5400 individual spectra (60 participants × 30 electrodes × 3 conditions/blocks [EO1, EC, EO2]). The 1/f noise had a distinct central scalp topography, and white noise was occipital in distribution, both differing from the parietal topography of the alpha Osc. These differences point to their separate neural origins. EC pink and white noise powers were globally greater than in EO. Significance. This valid estimation of pink and white noise in the human EEG holds promise for more accurate assessment of oscillatory neural activity in both typical and clinical groups, such as those with attention deficits. Further, outside the human EEG, the new methodology can be generalized to remove noise from spectra in many fields of science and technology.

Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: Electroencephalography Pink noise medicine Mathematics Signal processing medicine.diagnostic_test business.industry Oscillation Spectral density Pattern recognition White noise Function (mathematics) Noise Artificial intelligence business

Keywords

Rest, Biomedical Engineering, Eye, Cellular and Molecular Neuroscience, Humans, Brain, Electroencephalography, Attention Deficit Disorder with Hyperactivity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
bronze
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.