Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Freshwater Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Freshwater Biology
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Hyper Article en Ligne
Other literature type . 2006
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns

Authors: Nogaro, Géraldine; Mermillod-Blondin, Florian; François-Carcaillet, Frédérique; Gaudet, Jean-Paul; Lafont, Michel; Gibert, Janine;

Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns

Abstract

Summary1. Invertebrate bioturbation can strongly affect water‐sediment exchanges in aquatic ecosystems. The objective of this study was to quantify the influence of invertebrates on the physical characteristics of an infiltration system clogged with fine sediment.2. Two taxa (chironomids and tubificids) with different bioturbation activities were studied in experimental slow infiltration columns filled with sand and gravel and clogged with a 2 cm layer of fine sediment at the surface. We measured the effects of each taxon separately and combined on hydraulic head, water mobility and sediment reworking.3. The results showed that invertebrates could reduce sediment clogging and this effect was linked to the functional mode of bioturbation of each group. Tubificid worms dug networks of galleries in the fine sediment, creating pathways for water flow, which reduced the clogging of sediment. In contrast, the U‐shaped tubes of chironomids were restricted to the superficial layer of fine sediments and did not modify the hydraulic conductivity of experimental columns. The combination of invertebrates did not show any interactive effects between tubificids and chironomids. The occurrence of 80 tubificids in the combination was enough to maintain the same hydraulic conductivity that 160 worms did in monospecific treatment.4. The invertebrates like tubificid worms can have a great benefit on functioning of clogged interfaces by maintaining high hydraulic conductivity, which contributes to increased water‐sediment exchanges and stimulates biogeochemical and microbial processes occurring in river sediments.

Country
France
Subjects by Vocabulary

Microsoft Academic Graph classification: Water flow Soil science Clogging Hydraulic conductivity Ecology Aquatic ecosystem Sediment Infiltration (hydrology) Environmental science Bioturbation Hydrobiology

Keywords

clogging, fine sediment, Aquatic Science, infiltration columns, bioturbation, [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology, invertebrates

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.